(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, 0, 0) → s(x)
f(0, y, 0) → s(y)
f(0, 0, z) → s(z)
f(s(0), y, z) → f(0, s(y), s(z))
f(s(x), s(y), 0) → f(x, y, s(0))
f(s(x), 0, s(z)) → f(x, s(0), z)
f(0, s(0), s(0)) → s(s(0))
f(s(x), s(y), s(z)) → f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) → f(0, y, s(0))
f(0, s(0), s(s(z))) → f(0, s(0), z)
f(0, s(s(y)), s(s(z))) → f(0, y, f(0, s(s(y)), s(z)))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, 0', 0') → s(x)
f(0', y, 0') → s(y)
f(0', 0', z) → s(z)
f(s(0'), y, z) → f(0', s(y), s(z))
f(s(x), s(y), 0') → f(x, y, s(0'))
f(s(x), 0', s(z)) → f(x, s(0'), z)
f(0', s(0'), s(0')) → s(s(0'))
f(s(x), s(y), s(z)) → f(x, y, f(s(x), s(y), z))
f(0', s(s(y)), s(0')) → f(0', y, s(0'))
f(0', s(0'), s(s(z))) → f(0', s(0'), z)
f(0', s(s(y)), s(s(z))) → f(0', y, f(0', s(s(y)), s(z)))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(x, 0', 0') → s(x)
f(0', y, 0') → s(y)
f(0', 0', z) → s(z)
f(s(0'), y, z) → f(0', s(y), s(z))
f(s(x), s(y), 0') → f(x, y, s(0'))
f(s(x), 0', s(z)) → f(x, s(0'), z)
f(0', s(0'), s(0')) → s(s(0'))
f(s(x), s(y), s(z)) → f(x, y, f(s(x), s(y), z))
f(0', s(s(y)), s(0')) → f(0', y, s(0'))
f(0', s(0'), s(s(z))) → f(0', s(0'), z)
f(0', s(s(y)), s(s(z))) → f(0', y, f(0', s(s(y)), s(z)))
Types:
f :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
TRS:
Rules:
f(
x,
0',
0') →
s(
x)
f(
0',
y,
0') →
s(
y)
f(
0',
0',
z) →
s(
z)
f(
s(
0'),
y,
z) →
f(
0',
s(
y),
s(
z))
f(
s(
x),
s(
y),
0') →
f(
x,
y,
s(
0'))
f(
s(
x),
0',
s(
z)) →
f(
x,
s(
0'),
z)
f(
0',
s(
0'),
s(
0')) →
s(
s(
0'))
f(
s(
x),
s(
y),
s(
z)) →
f(
x,
y,
f(
s(
x),
s(
y),
z))
f(
0',
s(
s(
y)),
s(
0')) →
f(
0',
y,
s(
0'))
f(
0',
s(
0'),
s(
s(
z))) →
f(
0',
s(
0'),
z)
f(
0',
s(
s(
y)),
s(
s(
z))) →
f(
0',
y,
f(
0',
s(
s(
y)),
s(
z)))
Types:
f :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':s2_0(
0),
gen_0':s2_0(
+(
1,
*(
2,
n4_0))),
gen_0':s2_0(
1)) →
gen_0':s2_0(
2), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_0':s2_0(0), gen_0':s2_0(+(1, *(2, 0))), gen_0':s2_0(1)) →RΩ(1)
s(s(0'))
Induction Step:
f(gen_0':s2_0(0), gen_0':s2_0(+(1, *(2, +(n4_0, 1)))), gen_0':s2_0(1)) →RΩ(1)
f(0', gen_0':s2_0(+(1, *(2, n4_0))), s(0')) →IH
gen_0':s2_0(2)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
f(
x,
0',
0') →
s(
x)
f(
0',
y,
0') →
s(
y)
f(
0',
0',
z) →
s(
z)
f(
s(
0'),
y,
z) →
f(
0',
s(
y),
s(
z))
f(
s(
x),
s(
y),
0') →
f(
x,
y,
s(
0'))
f(
s(
x),
0',
s(
z)) →
f(
x,
s(
0'),
z)
f(
0',
s(
0'),
s(
0')) →
s(
s(
0'))
f(
s(
x),
s(
y),
s(
z)) →
f(
x,
y,
f(
s(
x),
s(
y),
z))
f(
0',
s(
s(
y)),
s(
0')) →
f(
0',
y,
s(
0'))
f(
0',
s(
0'),
s(
s(
z))) →
f(
0',
s(
0'),
z)
f(
0',
s(
s(
y)),
s(
s(
z))) →
f(
0',
y,
f(
0',
s(
s(
y)),
s(
z)))
Types:
f :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(0), gen_0':s2_0(+(1, *(2, n4_0))), gen_0':s2_0(1)) → gen_0':s2_0(2), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(0), gen_0':s2_0(+(1, *(2, n4_0))), gen_0':s2_0(1)) → gen_0':s2_0(2), rt ∈ Ω(1 + n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
f(
x,
0',
0') →
s(
x)
f(
0',
y,
0') →
s(
y)
f(
0',
0',
z) →
s(
z)
f(
s(
0'),
y,
z) →
f(
0',
s(
y),
s(
z))
f(
s(
x),
s(
y),
0') →
f(
x,
y,
s(
0'))
f(
s(
x),
0',
s(
z)) →
f(
x,
s(
0'),
z)
f(
0',
s(
0'),
s(
0')) →
s(
s(
0'))
f(
s(
x),
s(
y),
s(
z)) →
f(
x,
y,
f(
s(
x),
s(
y),
z))
f(
0',
s(
s(
y)),
s(
0')) →
f(
0',
y,
s(
0'))
f(
0',
s(
0'),
s(
s(
z))) →
f(
0',
s(
0'),
z)
f(
0',
s(
s(
y)),
s(
s(
z))) →
f(
0',
y,
f(
0',
s(
s(
y)),
s(
z)))
Types:
f :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(0), gen_0':s2_0(+(1, *(2, n4_0))), gen_0':s2_0(1)) → gen_0':s2_0(2), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(0), gen_0':s2_0(+(1, *(2, n4_0))), gen_0':s2_0(1)) → gen_0':s2_0(2), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)